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Abstract

Adversarial robustness continues to be a major
challenge for deep learning. A core issue is that
robustness to one type of attack often fails to
transfer to other attacks. While prior work estab-
lishes a theoretical trade-off in robustness against
different Lp norms, we show that there is space
for improvement against many commonly used
attacks by adopting a domain generalisation ap-
proach. In particular, we treat different attacks as
domains, and apply the method of Risk Extrapo-
lation (REx), which encourages similar levels of
robustness against all training attacks. Compared
to existing methods, we obtain similar or supe-
rior adversarial robustness on attacks seen during
training. More significantly, we achieve superior
performance on families or tunings of attacks only
encountered at test time. On ensembles of attacks,
this improves the accuracy from 3.4% on the best
existing baseline to 25.9% on MNIST, and from
10.7% to 17.9% on CIFAR10.

1. Intro
In the recent years, deep learning has encountered massive
success in many applications, ranging from computer vi-
sion to natural language processing. A major concern for
several real-world applications of machine learning, such
as healthcare (Qayyum et al., 2020) or autonomous driv-
ing (Deng et al., 2020), is their vulnerability to adversarial
perturbations (Biggio et al., 2013; Szegedy et al., 2014;
Goodfellow et al., 2015). For example, Eykholt et al. (2018)
show how seemingly minor physical modifications to road
signs may lead an autonomous car into misinterpreting stop
signs, while Li et al. (2020) achieve high success rates with
over-the-air adversarial attacks on speaker systems.
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Much work has been done in defending against adversar-
ial attacks (Goodfellow et al., 2015; Papernot et al., 2016).
However, new attacks commonly overcome existing de-
fenses(Athalye et al., 2018). A defense that has so far passed
the test of time against individual attacks is adversarial train-
ing. Goodfellow et al. (2015) originally proposed to train
directly on the training data perturbed with the Fast Gradi-
ent Sign Method, and Madry et al. (2018) further improved
robustness by training on an iterative version of this attack
called Projected Gradient Descent (PGD), using the L∞
norm to constrain the search region of adversarial examples.

Unfortunately, adversarial training can fail to provide high
robustness against several attacks, or tuning of attacks, only
encountered at test time. For instance, simply changing the
norm constraining the search for adversarial examples with
PGD has been shown theoretically and empirically (Khoury
& Hadfield-Menell, 2018; Tramèr & Boneh, 2019; Maini
et al., 2020) to induce significant trade-offs in performance
against PGD of different norms. This issue highlights the
importance of having a well-defined notion of “robustness”:
while using the accuracy against individual attacks has often
been the proxy for robustness, a better notion of robustness,
as argued by Athalye et al. (2018), is to consider the accu-
racy against an ensemble of attacks within a threat model
(i.e. a predefined set of allowed attacks). Indeed, to reuse
the example of autonomous driving, an attacker will not
be constrained to a single attack on stop signs, and is free
to attempt several attacks to find one that succeeds when
designing an adversarial modification to the road sign.

In order to be robust against multiple attacks, we draw in-
spiration from domain generalisation. In domain generalisa-
tion, we seek to achieve consistent performance even in case
of unknown distributional shifts in the inputs at test time.
We interpret different attacks as different distributional shifts
in the data, and propose to leverage existing techniques from
the out-of-distribution generalisation literature.

We choose variance REx (Krueger et al., 2021), which con-
sists in using the variance on the different training domains
of the empirical risk minimisation loss, as a loss penalty.
We choose this method as it is conceptually simple, its iter-
ations are no more costly than existing multi-perturbation
baselines’, it does not force a choice of architecture, and
it can be used on models pretrained with existing defenses.
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We consider robustness against an adversary having access
to both the model and multiple attacks. We are interested in
the two following research questions:

1. Can REx improve the robustness against multiple at-
tacks seen during training ?

2. Can REx improve the robustness against unseen at-
tacks, that is, attacks seen only at test time ?

Our results show that the answer to both questions is yes.
We show that REx consistently yields benefits across varia-
tions in: datasets, architectures, multi-perturbation defenses,
attacks seen during training, and attack types or tunings only
encountered at test time.

2. Related Work
2.1. Adversarial attacks and defenses

Since the discovery of adversarial examples against neural
networks (Szegedy et al., 2014), numerous approaches for
finding adversarial examples (i.e. adversarial attacks) have
been proposed in the literature (Goodfellow et al., 2015;
Madry et al., 2018; Moosavi-Dezfooli et al., 2016; Carlini &
Wagner, 2017; Croce & Hein, 2020), with the common goal
of finding minuscule perturbation vectors with constrained
magnitude that when added to the network’s input leads to
(often highly-confident) misclassification.

One of the earliest attacks, the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015), computes a perturbation
on an input x0 by performing a step of sign gradient ascent
in the direction that increases the loss L the most, given the
model’s current parameters θ. This yields an adversarial
example x̃ that may be misclassified:

x̃ = x0 + α sgn(∇xL(θ, x
0, y)). (1)

This was later enhanced into the Projected Gradient Descent
(PGD) attack (Kurakin et al., 2017; Madry et al., 2018) by
iterating multiple times this operation and adding projec-
tions to constrain it to some neighbourhood of x0, usually a
ball of radius ϵ centered at x0, noted Bϵ(x

0):

xt+1 = ΠBϵ(x0)

(
xt + α sgn(∇xL(θ, x

t, y))
)
. (2)

With the advent of diverse algorithms to defend classifiers
against such attacks, approaches for discovering adversarial
examples have become increasingly more complex over the
years. Notably, it was discovered that a great number of
adversarial defenses rely on gradient obfuscation (Athalye
et al., 2018), which consists in learning how to mask or
distort the classifier’s gradients to prevent attacks iterating
over gradients from making progress. However, it was later
discovered that such approaches can be broken by other

attacks (Athalye et al., 2018; Croce & Hein, 2020), some of
which simply circumventing these defenses by not relying
on gradients (Brendel et al., 2019; Andriushchenko et al.,
2020).

A defense that was shown to be robust to such counter-
measures is Adversarial Training (Madry et al., 2018), i.e.
training on PGD adversarial examples. Adversarial training
consists of solving a minimax optimisation problem where
the inner loop executes an adversarial attack algorithm, usu-
ally PGD, to find pertubations to the inputs that maximises
the classification loss, while the outer loop tunes the network
parameters to minimise the loss on the adversarial examples.
Despite the method’s simplicity, robust classifiers trained
with adversarial training achieve state-of-the-art levels of ro-
bustness against various newer attacks (Athalye et al., 2018;
Croce & Hein, 2020). For this reason, adversarial training
has become one of the most common methods for training
adversarially robust neural networks.

However, Khoury & Hadfield-Menell (2018) and Tramèr
& Boneh (2019) show how training on PGD with a search
region constrained using a p-norm may not yield robustness
against PGD attacks using other p-norms. One reason is
that different radii are typically chosen for different norms,
leading to the search spaces of PGD with respect to different
norms to have mutually exclusive regions. Another reason
is that different attacks, such as PGD and the Carlini and
Wagner (Carlini & Wagner, 2017) attacks, optimise different
losses.

Highlighting the need for methods specific to defending
against multiple types of perturbations, Tramèr & Boneh
(2019) select a set of 3 attacks A = {P∞, P2, P1}, where
Pn is PGD with a search region constrained by the Ln

norm. The attempt two strategies: the average (Avg) strategy
consists in training over all attacks in A for each input, and
the max strategy, which trains on the attack with the highest
loss for each sample:

LAvg(θ,A) = E
1

|A|
∑
A∈A

ℓ(θ,A(x), y) (3)

Lmax(θ,A) = Emax
A∈A

ℓ(θ,A(x), y) (4)

Maini et al. (2020) propose a modification to the method of
Tramèr & Boneh (2019): instead of having 3 different PGD
adversaries that each iterate over a budget of iterations as in
eq. 2, they design an attack consisting in choosing the worst
perturbation among L∞, L2 and L1 PGD every iteration
through the chosen number of iterations. This attack, Multi-
Steepest Descent (MSD), differs from the max approach of
Tramèr & Boneh (2019) where each attack is individually
iterated through the budget of iterations first, and the one
leading to the worst loss is chosen at the end. Maini et al.
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(2020) show that, in their experimental setup, MSD1 yields
superior performance to both the Avg and max approaches
of Tramèr & Boneh (2019).

Nevertheless, there is still a very large gap between the
performance of such approaches against data perturbed by
ensembles of attacks, and the accuracy on the unperturbed
data. In order to help address this large gap, we will be
exploiting a connection between our goal and that of domain
generalisation.

2.2. Robustness as a domain generalisation problem

Domain generalisation – Out-of-Distribution generalisa-
tion (OoD), is an approach to dealing with (typically non-
adversarial) distributional shifts. In the domain generali-
sation setting, the training data is assumed to come from
several different domains, each with a different data distri-
bution. The goal is to use the variability across training (or
seen) domains to learn a model that can generalise to unseen
domains while performing well on the seen domains. In
other words, the goal is for the model to have consistent
performance by learning to be invariant under distributional
shifts. Typically, we also assume access to domain labels,
i.e. we know which domain each data point belongs to.

Many methods for domain generalisation have been pro-
posed (Wang et al., 2021). However, recent work demon-
strates that such methods often fail to improve on standard
empirical risk minimisation (ERM), i.e. minimising loss
on the combined training domains without making use of
domain labels (Gulrajani & Lopez-Paz, 2020). On the other
hand, success may depend on choosing a method appropri-
ate for the type of shifts at play.

Our work views adversarial robustness as a domain gen-
eralisation problem. In our case, the domains correspond
to different adversarial attacks. Because different attacks
use different methods of searching for adversarial examples,
and sometimes different search spaces, they may produce
different distributions of adversarial examples. It is natural
to frame adversarial robustness as a domain generalisation
problem, because we seek a model that is robust to any
method to generate adversarially distributional shifts within
a threat model, including novel attacks.

A key difference with most work in domain generalisation,
however, is that when adversarially training, the training
distribution shifts every epoch, as the attacks are computed
from the continuously-updated values of the weights. In
contrast, in domain generalisation, the training domains are
usually fixed. We note that interestingly, the Avg approach
of Tramèr & Boneh (2019) can be interpreted as doing do-
main generalisation with ERM over the 3 PGD adversaries

1In the remainder of this paper, we will use MSD to refer to
both the MSD attack, and training on MSD as a defense.

as training domains. Similarly, the max approach consists in
applying the Distributionally Robust Optimisation approach
on the same set of domains. Furthermore, Song et al. (2018)
and Bashivan et al. (2021) propose to treat the clean and
PGD-perturbed data as training and testing domains from
which some samples are accessible during training.

In this work, we apply the method of variance-based risk
extrapolation (REx) (Krueger et al., 2021), which simply
adds as a loss penalty the variance of the ERM loss on dif-
ferent domains. This encourages worst-case robustness over
more extreme versions of the shifts (in this case, shifts are
between different attacks) observed between the training
domains. This can be motivated in the setting of adversarial
robustness by the observation that adversaries might shift
their distribution of attacks to better exploit vulnerabilities
in a model (Goodfellow, 2019). In that light, REx is particu-
larly appropriate given our objective of mitigating trade-offs
in performance between different attacks to achieve a more
consistent degree of robustness. We note that our implemen-
tation of REx has the same computational complexity as the
MSD, Avg and max approaches, requiring the computation
of 3 adversarial perturbations per sample.

3. Methodology
Threat model – In this work, we consider white-box attacks,
which are typically the strongest type of attacks as they as-
sume the attacker has access to the model and its parameters.
Additionally, the attacks considered in the evaluations are
gradient-based, with the exception of AutoAttack, which is
composite (Croce & Hein, 2020). Because we assume that
the attacker has access to all of these attacks, we empha-
sise that, as argued by Athalye et al. (2018), the robustness
against the ensemble of the different attacks is a better met-
ric for how the defenses perform than the accuracy on each
individual attack. Thus, using ℓ01 as the 0-1 loss, we evalu-
ate the performance on an ensemble of domains D as:

R = 1− Emax
D∈D

ℓ01(θ,D(x), y) (5)

REx – We propose to regularise the average loss over a set
of training domains D by the variance of the losses on the
different domains:

LREx(θ,D) = LAvg(θ,D) + β Var
D∈D

E ℓ(θ,D(x), y) (6)

where ℓ is the cross-entropy loss. We start penalising by
the variance over the training domains once the baseline’s
accuracies on the seen domains stabilise or peak.

Datasets and architectures – We consider two datasets:
MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky
et al., 2009). It is still an open problem to obtain high
robustness against multiple attacks on MNIST (Tramèr &
Boneh, 2019; Maini et al., 2020), even at standard tunings of
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Table 1: Accuracy on MNIST for different domains. Highlighted cells indicate that the attack (row) was used during training
by the defense (column). Bold numbers indicate an improvement of at least 1% accuracy over the baseline on which REx
was pretrained. Ensembles omit P •

∞ due to it being overtuned.

Defenses
None Adversarial training Avg Avg+REx AvgPGDs Avg+RExPGDs MSD MSD+REx

No attack 98.1 98.5 98.3 84.4 99.0 90.0 98.8 87.3 88.4 90.2
P1 95.5 96.8 96.8 44.0 90.3 72.6 95.6 82.5 82.2 86.8
P2 1.8 17.7 63.5 10.0 53.6 44.0 68.3 72.8 61.1 71.8
P∞ 0.0 0.0 2.2 59.2 67.7 70.1 58.0 70.8 19.3 67.4
DF∞ 3.3 5.7 85.9 78.1 92.9 84.6 92.3 80.9 56.7 82.4
CW2 4.4 6.9 56.5 62.3 68.8 68.3 59.9 41.4 77.1 47.3
P •
∞ 0.0 0.0 0.0 5.1 0.6 4.0 0.9 0.7 0.2 1.0

DF •
∞ 0.0 0.0 0.0 19.4 7.1 64.8 3.7 58.4 15.8 19.9

CW •
2 2.3 2.8 16.0 30.2 23.2 42.1 16.4 12.1 40.2 12.9

AutoAttack 0.0 0.0 0.1 55.0 42.3 58.8 34.9 40.6 1.5 31.2
Ensemble (seen) - - - - 63.2 63.4 55.5 64.5 19.3 60.1
Ensemble (always
unseen)

0.0 0.0 0.0 9.3 3.4 34.6 1.2 8.1 0.6 3.9

Ensemble (all un-
seen)

0.0 0.0 0.0 2.7 3.4 25.9 1.2 8.1 0.6 3.9

Ensemble (all) 0.0 0.0 0.0 2.7 3.4 25.9 1.2 8.1 0.6 3.9

some commonly used attacks. On MNIST, we use a 3-layer
multilayer perceptron of size [512, 512, 10]. On CIFAR10,
we use the ResNet18 architecture (He et al., 2016). We
choose two significantly different architectures to illustrate
that our approach may work agnostically to the choice of
architecture. We use batch sizes of 128 during training on
both datasets.

Optimiser – We use Stochastic Gradient Descent (SGD)
with a momentum of 0.9 and a fixed learning rate of 0.01.
While we observe that a reduction of the learning rate bene-
fits all modalities, due to the sheer number of hyperparam-
eters involved, we wish to avoid the added complexity of
having to search for an optimal schedule for each method
and tuning of attacks. For the same reason, we fix the coef-
ficient β in the REx loss.

Domains – We consider several domains: unperturbed data,
L1, L2 and L∞ PGD (denoted P1, P2, P∞), L2 Carlini &
Wagner (CW2) (Carlini & Wagner, 2017), L∞ DeepFool
(DF∞) (Moosavi-Dezfooli et al., 2016) and AutoAttack
(Croce & Hein, 2020). We use the Advertorch implemen-
tation of these attacks (Ding et al., 2019). For L∞ PGD,
CW and DF, we use two sets of tunings, see appendix A
for details. The attacks with a • superscript indicate a
harder tuning of these attacks that no model was trained
on. Those tunings are intentionally chosen to make the at-
tacks stronger. The set of always unseen domains is defined
as {P •

∞, DF •
∞, CW •

2 ,AutoAttack}. The set of all unseen
domains is the set of all domains except those seen during
training, and therefore varies between baselines. We per-

form 10 random restarts for each attack per sample to reduce
randomness in the evaluations (but not during training).

Defenses – Aside from the adversarial training baselines
on PGD of L1, L2 and L∞ norms, we define 3 sets of
seen domains: D = {∅, P∞, DF∞, CW2}, DPGDs =
{∅, P1, P2, P∞} and DMSD = {MSD} where ∅ represents
the unperturbed data. We train two Avg baselines: one on
D and one on DPGDs. We train the MSD baseline on DMSD.
We use REx on the Avg baselines on the corresponding set
of seen domains. However, when REx is used on the model
trained with the MSD baseline, we revert to using the set
of seen domains DPGDs. While the MSD baseline does not
exactly train over P1, P2 and P∞ but rather a composition
of these three attacks, we use these attacks when applying
REx to the MSD baseline as MSD would only generate one
domain, which would not allow us to compute a variance
over domains. Note that we chose different sets of seen do-
mains, and different baselines (Avg and MSD), in order to
show that REx yields benefits on several multi-perturbation
baselines, or within a same baseline with different choices
of seen domains. We use cross-entropy for all defenses.

All models are trained using a single Nvidia A100 for
MNIST and 2 Nvidia A100s for CIFAR10.

4. Results
4.1. MNIST

We report our results on MNIST in Table 1. REx signif-
icantly improves the robustness against the ensembles of
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Table 2: Accuracy on CIFAR10 for different domains. Ensembles omit CW•
2 due to overtuning.

Defenses
None Adversarial training Avg Avg+REx AvgPGDs Avg+RExPGDs MSD MSD+REx

No attack 87.6 92.1 87.1 77.4 80.9 75.1 82.8 79.0 76.3 75.1
P1 80.3 87.6 85.0 75.7 78.7 72.0 80.4 77.0 74.4 72.7
P2 19.9 47.8 70.9 66.6 69.8 65.3 71.1 68.0 65.7 65.9
P∞ 0.0 0.0 9.7 39.5 34.4 44.2 32.3 41.2 37.9 41.9
DF∞ 4.1 19.2 60.2 64.6 64.9 62.2 66.8 64.5 62.7 63.6
CW2 0.0 0.0 1.3 11.2 9.8 21.6 8.7 16.5 10.7 17.5
P •
∞ 0.0 0.0 1.0 20.1 16.3 24.1 13.2 22.1 19.3 23.8

DF •
∞ 0.0 0.0 9.5 38.5 35.6 40.5 33.0 39.1 36.6 40.4

CW •
2 0.0 0.0 0.1 1.1 1.6 2.6 1.1 2.7 1.0 2.7

AutoAttack 0.0 0.0 8.1 37.2 33.7 38.8 31.2 37.6 36.0 39.0
Ensemble (seen) - - - - 9.8 21.2 32.3 41.2 37.9 41.8
Ensemble (always
unseen)

0.0 0.0 1.0 20.1 16.3 24.0 13.2 22.0 19.3 23.6

Ensemble (all un-
seen)

0.0 0.0 0.9 10.7 16.3 24.0 7.7 14.2 10.3 16.1

Ensemble (all) 0.0 0.0 0.9 10.7 9.4 17.9 7.7 14.2 10.3 16.1

attacks, whether seen or unseen, and in particular on P∞
and AutoAttack. REx also yields notable improvements
against all ensembles, seen or unseen, when used on the
Avg baselines. Note however that as in domain generalisa-
tion, when used on all baselines except MSD, REx sacrifices
performance on the best performing seen domains in order
to improve the performance on the strongest attacks. We
believe that this trade-off may be worth it for applications
where robustness is critical, as for example the 9% of clean
accuracy lost by using REx on one Avg baseline translates
in an increase of robustness from 3.4% to 25.9% on the en-
semble of all attacks excluding the overtuned P •

∞ adversary.

Our test with tuning the P •
∞ adversary with ϵ = 0.4 instead

of the common tuning of 0.3 on MNIST suggests that REx
does not appear to rely on gradient masking compared to
the baselines, as the accuracy drops to near 0 values for
all models, showing that attacks are successfully computed.
A second observation is that the MSD baseline performs
surprisingly poorly against AutoAttack and P∞. While we
reused the original code of Maini et al. (2020), there could
be multiple reasons for this: firstly, we used momentum
SGD when the original paper used Adam. Secondly, we
did not use the same architecture as Maini et al. (2020) on
MNIST. Thirdly, we did not have a learning rate schedule
– albeit it does not seem likely that this would cause such
a particular degradation of performance for MSD but not
the other baselines. Or, in the case of AutoAttack, the MSD
model is just failing to learn how to be robust against the
attack. This leads to poor performance against all ensembles
of attacks, whether seen or unseen, as those include either
L∞ PGD or AutoAttack adversaries.

4.2. CIFAR10

The results on CIFAR10 are summarised in Table 2. We
still observe that REx is an improvement over the ensemble
of seen attacks compared to the baselines it was used on.
As on MNIST, this happens by improving the performance
on the strongest of the seen attacks and sacrificing a little
performance on the top performing attack(s). Moreover,
REx consistently yields a significant improvement in ro-
bustness when evaluated against the ensemble of unseen
attacks, too. The only individual attacks where REx never
yields an improvement are L1 and L2 PGD, whether they
were seen during training or not. Given the relatively good
performance of the baselines and REx on those attacks, this
is in line with REx’s tendency to sacrifice a few percents of
accuracy on the best performing domains to improve signifi-
cantly the performance on the worst performing domains.

While adversarial training on either L1 or L2 PGD fails to
yield robustness to unseen attacks, we observe that these
two defenses are the only ones for which the clean accuracy
does not decrease significantly. We note that unlike on
MNIST, MSD is significantly more competitive with the
other baselines, and its performance is relatively similar to
the one reported by Maini et al. (2020) (likely due to using
the same architecture as Maini et al. (2020) on CIFAR10).
Interestingly, the model adversarially trained on L∞ PGD
performs better than the Avg, AvgPGDs and MSD models on
the always unseen set of attacks.
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(a) MNIST seen attacks (b) MNIST unseen attacks

(c) CIFAR10 seen attacks (d) CIFAR10 unseen attacks

Figure 1: Validation accuracy of Avg on MNIST (top) and MSD on CIFAR10 (bottom) with and without REx (dashed line),
against seen attacks (left) and unseen attacks (right). AA denotes AutoAttack, ERM denotes the Avg baseline.

4.3. Early stopping and REx

In Figure 1, we observe how regularising by the variance
over the domains leads to better peak performance when
using REx, over different datasets, architectures, and base-
lines. Like the baselines, REx requires early stopping. For
all defenses, we use the validation set to choose when to
early stop by selecting the epoch when the performance
peaks on most domains, prioritising the worst performing
domain. As shown on the MNIST curves, even though we
stop training before REx reaches higher performance on the
seen attacks, we still get significant improvements on the
unseen attacks and against the ensembles, as reported in
Table 1. See appendix A for more details on how REx is
used.

5. Conclusion
While good levels of accuracy have been attained when
defending against specific attacks, robustness against mul-
tiple attacks has been more difficult to achieve Khoury &

Hadfield-Menell (2018); Tramèr & Boneh (2019); Maini
et al. (2020). It is important to keep in mind that for exam-
ple, in a fixed threat model, an attacker may realistically use
any allowed attack until the attack succeeds. Therefore, mit-
igating trade-offs is crucial in order to prevent a significant
vulnerability to any particular attack. In our work, by lever-
aging the connection between the problem of robustness
against multiple adversarial attacks and that of generalising
to various distributional shifts in the data during training and
at test time, we illustrate how a simple approach, REx, can
be used to obtain significant improvements in performance
against both the seen and unseen attacks in a robust sense
(that is, against attackers able to use any of the tested attacks
on any sample). A major advantage of REx is that it can
be used on top of existing baselines for robustness against
multiple attacks, without adding computational complexity
per iteration. We vary the dataset, architecture, defense
baselines, attack types seen during training, attack types
and tuning within a same type of attack at test time, and
show that REx leads to consistent improvements in every
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case. As future work, we will test our methods on attacks
that are not gradient-based, attempt more fine-tuning of the
defenses, and test how robust the different baselines and
REx are against natural perturbations. Furthermore, we
plan to investigate other domain generalisation methods,
such as Invariant Risk Minimisation (Arjovsky et al., 2019;
Ahuja et al., 2020). We encourage the community to fur-
ther explore connections between domain generalisation and
adversarial robustness.
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The code can be found at
https://github.com/AIproj/Towards-Out-of-Distribution-Adversarial-Robustness

A. More on methodology
A.1. Attack tunings

Using Advertorch’s and Croce’s implementation of AutoAttack’s2 parameter names, we report the attacks’ tuning here.

MNIST

1. P1: ϵ = 10, niter = 40, ϵiter = 0.5

2. P2: ϵ = 2, niter = 40, ϵiter = 0.1

3. P∞: ϵ = 0.3, niter = 40, ϵiter = 0.01

4. DF∞: ϵ = 0.11, niter = 30

5. CW2: max_iterations = 20, learning_rate = 0.1, binary_search_steps = 5

6. P •
∞: ϵ = 0.4, niter = 40, ϵiter = 0.033

7. DF•
∞: ϵ = 0.4, niter = 50

8. CW•
2: max_iterations = 30, learning_rate = 0.12, binary_search_steps = 7

9. AutoAttack: ϵ = 0.3, norm = “Linf”

CIFAR10

1. P1: ϵ = 10, niter = 40, ϵiter =
2

255

2. P2: ϵ = 0.5, niter = 40, ϵiter =
2

255

3. P∞: ϵ = 8
255 , niter = 40, ϵiter =

2
255

4. DF∞: ϵ = 0.011, niter = 30

5. CW2: max_iterations = 20, learning_rate = 0.01, binary_search_steps = 5

6. P •
∞: ϵ = 12

255 , niter = 70, ϵiter =
2

255

7. DF•
∞: ϵ = 8

255 , niter = 50

8. CW•
2: max_iterations = 30, learning_rate = 0.012, binary_search_steps = 7

9. AutoAttack: ϵ = 8
255 , norm = “Linf ′′

A.2. More on how the models are trained

First, we pretrain the architecture on the clean dataset. Then, the baseline is trained on the appropriate seen domains. On
MNIST, convergence does not happen in many baselines’ case until thousands of epochs. Therefore, we choose to stop
training when progress on the seen domains slows, as in Fig. 1 where we stopped training for example at epoch 1125 for
both the Avg and the Avg+REx models. For CIFAR10, the accuracies peak in significantly less epochs, so we early stop
when the average accuracy on the seen domains peaks. Note that we do this manually by looking at the seen domains’
validation curves. REx is triggered on a baseline before the baseline’s early stopping epoch, when progress on the seen
domains slows.

2https://github.com/fra31/auto-attack

https://github.com/AIproj/Towards-Out-of-Distribution-Adversarial-Robustness
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Using the curves in Fig. 1 as an illustration, on CIFAR10, we chose for example to early stop the MSD baseline at epoch 40.
As for the MSD+REx model, REx is activated at epoch 26, and is early stopped at epoch 70. An important precision about
Fig. 1 is that unseen attack performance is only evaluated every 5 epochs, hence the jagged aspect of the curves. We do this
because of the huge computational cost of running all 9 attacks on each sample every epoch.

For a full description of early stopping and when we activated the REx penalty on baselines:

MNIST

• P1 model: early stopped at epoch 95

• P2 model: early stopped at epoch 75

• P∞ model: early stopped at epoch 1125

• Avg model: early stopped at epoch 1125

• Avg+REx model: REx penalty activated at epoch 726, early stopped at epoch 1125

• AvgPGDs model: early stopped at epoch 1105

• Avg+RExPGDs model: REx penalty activated at epoch 551, early stopped at epoch 1105

• MSD model: early stopped at epoch 655

• MSD+REx model: REx penalty activated at epoch 101, early stopped at epoch 655

CIFAR10

• P1 model: early stopped at epoch 69

• P2 model: early stopped at epoch 59

• P∞ model: early stopped at epoch 45

• Avg model: early stopped at epoch 50

• Avg+REx model: REx penalty activated at epoch 301, early stopped at epoch 330

• AvgPGDs model: early stopped at epoch 95

• Avg+RExPGDs model: REx penalty activated at epoch 301, early stopped at epoch 370

• MSD model: early stopped at epoch 40

• MSD+REx model: REx penalty activated at epoch 26, early stopped at epoch 70

A.3. Other implementation details

We use the implementation of https://github.com/kuangliu/pytorch-cifar/blob/master/models/
resnet.py for ResNet18.

REx’s β parameter is generally set to 10, except for MSD+REx on MNIST where it is set to 4. These numbers come from
setting β to a value of the same order of magnitude as LAvg

Var ’s value at the epoch REx is activated. This is done to encourage
the optimisation dynamics to neglect neither term of the REx loss.

https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
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